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Propagation of solitons in the Toda lattice with an impure segment

Yoji Kubota and Takashi Odagaki
Department of Physics, Kyushu University, Fukuoka 812-8581, Japan

~Received 26 July 1999!

The transmission and scattering of a single soliton is studied numerically in the Toda lattice with an impure
segment which consists of two kinds of masses. The incident soliton is split into transmitted, reflected, and
trapped solitons by the impure segment. The energy of the soliton trapped in the segment escapes from the
segment very slowly and thus we can define the transmission rate by the ratio of energies of the transmitted
soliton and the incident soliton. It is shown that the dependence of the transmission rate on the segment length
N can be fitted quite well by 1/(11aNb). The transmission rate is also shown to be a monotone decreasing
function of the wave number of the incident soliton. Most of the energy of the transmitted wave is carried by
a large soliton~the frontier soliton! at the front, which is shown to be an exact soliton of the Toda lattice. When
the mass difference is small, the transmission rate can be obtained by considering the segment as a repetition
of a unit and repeating the renormalization of the wave number due to the unit.

PACS number~s!: 42.81.Dp, 05.45.Yv
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I. INTRODUCTION

Propagation of solitons in inhomogeneous media sho
many important aspects such as deformation and disrup
of solitons, excitation of localized modes, and scattering
solitons @1–14#. In particular, the generation of localize
modes and scattering of incident solitons due to impuri
are important problems in the study of the basic propertie
soliton propagation and in practical applications. It is w
known that a harmonic chain with a light mass impurity h
a stable localized mode whose amplitude decays expo
tially with the distance from the impurity@15#. Many nu-
merical studies have shown that there are localized mode
nonlinear media with impurities. The localized mode due
a single impurity in the Toda lattice behaves similar to t
localized state in a harmonic chain with a single impur
@1,7,8#. When nonlinearity and inhomogeneity are we
enough, the scattering problem of solitons can be trea
analytically by a perturbation method. In this case, the
viation from the one soliton state is insignificant. For e
ample, the Toda lattice with a single mass impurity has b
studied with the perturbation method on the basis of the
verse scattering transformation by Yajima@5#. If the differ-
ence of masse is small enough, the decreasedA of the
transmitted soliton amplitude was shown to behave asdA
}(eA)2, where A is the amplitude of the incident wave
Transmission of a soliton in random media with quartic no
linearity has been studied theoretically and numerica
@10,12,14#. The time dependence of the amplitude of t
transmitted soliton was shown to behave ast21/2 for large t
in the continuum limit@10#. When nonlinearity and inhomo
geneity are not weak, it is virtually impossible to obtain t
solution analytically.

In this paper, we investigate numerically fundamental
pects of soliton scattering due to impure segments. In
present study, we treat the Toda lattice as a represent
system which supports solitons. It should be emphasized
the treatment presented here will give some basic princi
in the study of soliton scattering and transmission in gene
The reason that we treat the Toda lattice is that~1! since the
PRE 611063-651X/2000/61~3!/3133~6!/$15.00
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exact solution exists for the Toda lattice without continuu
approximation, we can change the wave number of the s
ton as large as we want and~2! since there exists a nonlinea
LC circuit that is identical to the Toda lattice as suggested
Hirota and Suzuki@11#, we can test our numerical results b
experiments. The basic study for the soliton propagation
media subject to random modifications is also relevant
important in the optical soliton communication in fiber opti
@16#.

Our model is introduced in Sec. II, where we define ba
quantities which are used in the following discussion. Wh
a soliton is launched into a segment with random mass
tribution, we observe transmitted, reflected, and trapped s
tons. The trapped soliton appears to be localized in the s
ment and to gradually escape from the segment. We call
trapped soliton a quasilocalized soliton. We define quanti
describing soliton propagation in this situation. In Sec. I
we present the numerical results when a soliton is launc
into a finite impure segment. We study the dependence of
scattering characteristics on the length of the segment
the wave number of the soliton. We will see that the tra
mitted wave consists of many peaks, the first one of which
an exact soliton. In Sec. IV, we discuss the time depende
of the trapped solitons in the impure segment. We give
simple analysis of the scattering process in Sec. V. Sec
VI is devoted to discussion.

II. MODEL

We consider the Toda lattice@17# whose Hamiltonian is
given by

H5(
n

F 1

2mn
pn

21
a

b
~e2bun1bun21!G , ~2.1!

un5qn112qn , ~2.2!

wheremn is the mass of a particle at siten, andpn andqn are
the momentum and displacement of the particle on siten,
respectively. The interaction between particles on sitesn and
3133 ©2000 The American Physical Society
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n11 is determined bya and b, where b is a controlling
parameter of the nonlinearity. In fact, if we take the limit
b50 keepingK[ab constant, the potential energy becom

the harmonic form(n
1
2 K(qn112qn)2. We embed a finite

segment of impure masses in a homogeneous infinite ch
Namely, we set

mn5H m for n<0 and n>N11

m~11egn! for 1<n<N
, ~2.3!

wheregn is assumed to be 1 or21 andeP(0,1) denotes the
difference of two kinds of masses. We place equal num
(N/2) of gn51 andgn521 randomly in the segment ofN
sites, so that the average mass of the segment is the sam
the regular part.

In order to perform the numerical study, we introdu
dimensionless variables for time, momentum, and displa
ment which are defined by

t5Vt, ~2.4!

Pn5
b

mV
pn , ~2.5!

Qn5bqn , ~2.6!

whereV5Aab/m. The equations of motion reduce to

H ]

]t
Qn5

Pn

11egn

]

]t
Pn52~e2Un21!1~e2Un2121!,

~2.7!

whereUn5Qn112Qn . At time t50, we prepare one soli
ton solution

Un52 ln@11v0
2 cosh22~k0n2v0t!#ut50 , ~2.8!

v05sinhk0 ~2.9!

at the far left of the segment and let it propagate to the ri
~Fig. 1!. The energy of the soliton in the unit ofa/b is given
by

E052~sinhk0coshk02k0!. ~2.10!

Here,k0 is regarded as the wave number of the soliton sca
by b.

When the soliton passes the impure segment, we obs
three waves subsequently: transmitted (T), reflected (R),
and quasilocalized~L! waves ~Fig. 2!. The energy of the
incident soliton is distributed into these three waves. In or

FIG. 1. The perspective of an incident soliton on the Toda
tice with the impure segment 1<n<N.
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to study the scattering process, we define three temp
quantities which represent the fraction of the incident ene
in these three waves:

T~t!5ET~t!/E0 , ~2.11!

R~t!5ER~t!/E0 , ~2.12!

L~t!5EL~t!/E0 , ~2.13!

whereET(t) andER(t) are the energy in the regions left an
right of the segment, respectively, andEL(t) is the energy in
the segment. As we can see from the following numeri
results, the transmitted soliton consists of a large soliton
the front and many small waves following it, and most of t
energy is carried by the large soliton. We call the large s
ton the frontier soliton. Therefore we can use the front
soliton transmission coefficient

T15E1 /E0 ~2.14!

as the measure of the transmission coefficient@13,14#, where
E1 is the total energy of the frontier soliton. In Ref.@14#, it is
called ‘‘the first soliton transmission coefficient.’’ We us
these quantities to analyze the scattering process of a so
in the following sections.

III. TRANSMISSION PROFILES

We prepare a chain of 500 sites in which we embed
impure segment of 100 sites at@1,100#. We integrate Eq.
~2.7! numerically using the fourth-order Runge-Kut
method and obtain the spatiotemporal evolution of ene
densityhn(t) which is given by

hn~t!5
1

2E0
H Pn

2~t!

11egn
1@e2Un(t)1Un~t!21#

1@e2Un21(t)1Un21~t!21#J . ~3.1!

We note thathn(t) is normalized by the total energy o
incident soliton. Figure 3 showshn(t) as a function ofn and
t when the difference of two kinds of masses and the w

-

FIG. 2. The profile of waves, after some time the soliton pas
the impure segment at@1,100# ~denoted by a thick dashed line!
which consists of transmitted (T), reflected (R), and quasilocalized
~L! waves.Un is relative displacement scaled by 1/b.



itt
rt
eg
d
th
nc
ll

op
g

to
n

er

he

d

is

fine

s is
er

age

e,

-

m-
of

of

PRE 61 3135PROPAGATION OF SOLITONS IN THE TODA LATTICE . . .
number of the incident soliton aree50.2 andk051.0. The
incident soliton is scattered by the segment, and transm
and reflected waves are produced. At the same time a pa
the incident soliton energy is captured in the impure s
ment. The characteristics of the transmitted wave depen
the strength of the impure segment and the amplitude of
incident soliton. We observed that when the mass differe
e is small and the amplitude of the incident soliton is sma
the transmitted wave keeps its shape as soliton and pr
gates without much effect. When the irregularity is stron
the transmitted wave is disintegrated into a frontier soli
and many little waves which follow the frontier soliton. I
Fig. 4, we showT(t), R(t), andL(t) as functions of time
whereET(t)5(n5101hn(t),ER(t)5(n51

100 hn(t), andEL(t)
5(n52200

0 are utilized in Eqs.~2.11!–~2.13!. Since our
model does not have any energy dissipation, the total en
should be conserved, namely,

T~t!1R~t!1L~t!51. ~3.2!

This sum rule was confirmed to hold in our results within t
discretization error.

FIG. 3. The spatiotemporal evolution of energy densityhn(t)
which is normalized by total energy.t is dimensionless time de
fined byt5Aab/mt.

FIG. 4. The energy of transmittedT(t), reflectedR(t), and
localizedL(t) solitons as functions of time.t is dimensionless time
defined byt5Aab/m t. The impure segment length, the wave nu
ber of the incident soliton, and the difference of two kinds
masses areN5100, k051.0, ande50.2, respectively.
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In Fig. 4, the abrupt decrease inR(t) accompanied with
the abrupt increase inL(t) indicates that the soliton entere
the segment att585. Similarly, the sudden increase inT(t)
near t5175 denotes that a part of the incident soliton
leaving the segment. The energy in the impure segmentL(t)
decreases very slowly after some time and thenT(t) and
R(t) are regarded as constants which can be used to de
the transmission and reflection coefficients.

Since most part of the energy in the transmitted wave
carried by the frontier soliton, we use mostly the fronti
soliton transmission coefficientT1 in the following discus-
sion.

A. N dependence ofT1

We obtainedT1 for various lengthN of the impure seg-
ment keeping other parameters fixed. The total energyE0
and the wave numberk0 of the incident soliton are 1.6269
and 1.0. Figure 5 shows theN dependence ofT1 for e
50.1, 0.2, 0.3, and 0.4, which were obtained by the aver
over 20 samples.

The N dependence ofT1 can well be fitted by

T1~N!.
1

11aNb
. ~3.3!

The values ofa andb are summarized in Table I. Therefor

FIG. 5. The frontier soliton transmission coefficientT1 is plotted
as a function of the segment lengthN with error bars fore50.1
~s!, 0.2 ~d!, 0.3 ~L!, and 0.4~1!. The wave numberk0 of the
incident soliton is 1.0. The solid curves are the fit by Eq.~3.3!.

TABLE I. The constantsa and b in function 1/(11aNb),
which representsN dependence ofT1 for the difference of two
kinds of massese50.1, 0.2, 0.3, and 0.4. The wave number
incident soliton is fixed ink051.0.

e a b

0.1 0.001376 1.086
0.2 0.003952 1.174
0.3 0.01114 1.112
0.4 0.03384 0.9373
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3136 PRE 61YOJI KUBOTA AND TAKASHI ODAGAKI
for largeN we haveT1;N2b.

B. k0 dependence ofT1

KeepingN5100 ande50.2 fixed, we calculatedT1 for
solitons with various wave numbers. In Fig. 6,T1’s are plot-
ted against the wave numberk0 of the incident soliton, which
were calculated from the average over 10 samples. We
see from Fig. 6 thatT1 decreases withk0. In the smallk0
region,k0&2.2, the decay ofT1 is represented by a Loren
zian function

T1.
c

k0
21c

~3.4!

with c51.178. In the largek0 limit, T1 tends to a finite
value.

C. Frontier soliton

The frontier soliton seems to propagate without decay
ter it entered into the homogeneous region on the right h
side. To confirm this, we show in Fig. 7 the comparis
between the frontier soliton and an exact soliton with
same energy. Agreement of the shape of these soliton
excellent, and thus it is concluded that the scattering proc
generates a new soliton.

IV. QUASILOCALIZED SOLITONS

A part of the incident soliton is trapped in the impu
segment and the trapped energy escapes from the seg
gradually. Figure 8 shows the decay of the trapped ene
for e50.1, 0.2, 0.3, and 0.4 in the logarithmic scale. T
segment length and the wave number of the incident sol
areN5100 andk051.0.

In Fig. 8, the initial weak decay fort&170 represents the
decay due to the reflection, and the following rapid decre
is produced by the escape of the frontier soliton from

FIG. 6. The frontier soliton transmission coefficientT1(1) as a
function of the wave numberk0 of the incident soliton with error
bars. The wave numberk is scaled byb. The impure segment lengt
and the difference of two kinds of masses areN5100 ande50.2.
The solid curve denotes the Lorentzian function~3.4!.
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segment. In the time region, 180&t&500, the decay ofL(t)
can be approximated by;ej/t, the value of parameterj is
summarized in Table II. The decay in the long time regi
can be fitted by a power-law function;t2m whose exponent
is also summarized in Table II. The crossover indicates t
stable trapped modes are found in the segment and tha
trapped modes escape from the region at a much slower

V. SIMPLE ANALYSIS

We analyze theN dependence of the frontier soliton tran
mission coefficient from the results obtained in Sec. III. W
plot the wave numberkt of the frontier soliton transmitted
from an impure segment against the wave numberki of the

FIG. 7. Comparison of the frontier soliton (d) and the exact
soliton of the Toda lattice~—! with the same energy.Un is relative
displacement scaled by 1/b.

FIG. 8. The energyL(t) of the solitons trapped in the impur
segment is plotted as a function of time in the logarithmic scale
the difference of two kinds of massese50.1 ~the solid line!, 0.2
~the dashed line!, 0.3 ~the short dashed line!, and 0.4~the dotted
line!. t is dimensionless time defined byt5Aab/m t. The impure
segment length and the wave number of the incident soliton arN
5100 andk051.0. The dot-dashed curve denotes fitting functi
;ej/t and the two-dot–dashed line denotes;t2m for e50.1.
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PRE 61 3137PROPAGATION OF SOLITONS IN THE TODA LATTICE . . .
incident soliton, wherekt is determined numerically fromT1
by

EiT152~sinhktcoshkt2kt!, ~5.1!

whereEi is the total energy of the incident soliton. Figure
showskt as a function ofki for the impure segment lengt
and the mass difference areN5100 ande50.2.

We have shown that the frontier transmitted soliton is
exact soliton of the Toda lattice in Sec. III. Suppose a soli
propagates through a long impure segment ofN5nN0 sites.
~As an example, we setN05100.! Then, we can conside
that the soliton goes through a segment ofN0 sites one by
one and each segment changes the wave number of the
ton according to the relation shown in Fig. 9. Thus by
peating the renormalization of the wave numberki°kt n
times, we can estimate theN dependence ofT1 from Eq.
~5.1! which is plotted in Fig. 10 together with the resu
obtained in Sec. III. We can see from Fig. 10 that whene is
small (&0.2) the renormalization method works quite we
and the agreement becomes poor for largee (*0.3). The
discrepancy for largee is due to the fact that the soliton i
reflected at the boundary between successive segments

TABLE II. The coefficient of functions which represents tim
dependence of the energyL(t) of the solitons localized in the im
pure segment for the difference of two kinds of massese
50.1, 0.2, 0.3, and 0.4. The length of the impure segment and
wave number of the incident soliton areN5100 andk051.0, re-
spectively. In the intermediate time regionL(t);ej/t and in the
long time regionL(t);t2m.

e j m

0.1 397.1 0.2511
0.2 272.4 0.1073
0.3 290.6 0.2898
0.4 270.4 0.3694

FIG. 9. The wave numberkt ~d! of the transmitted frontier
soliton as a function of the wave numberki of the incident soliton.
The wave numberk is scaled byb. The impure segment length an
the difference of two kinds of masses areN5100 ande50.2. The
dashed line denoteskt5ki .
e
n

oli-
-

VI. SUMMARY

We have studied numerically the propagation of solito
through a segment with impure masses and investigated
characteristic feature in the scattering process of solitons
the segment. The incident soliton propagates emitting lo
ized modes due to the breaking of integrability by the ra
dom mass segment. The localized modes radiate ripples,
localized energy escapes gradually from the impure segm
We defined the transmission, reflection, and quasilocali
rate using the distribution of the incident energy in the
waves. We also defined the frontier soliton transmission
efficientT1 and showed thatT1 behaves as 1/(11aNb) as a
function of length N of the impure segment. We also show
that T1 depends on the energy or the wave number of
incident soliton. It is interesting to note that the fronti
transmitted soliton is also an exact soliton of the Toda latti
This indicates that we can control the soliton transmission
impurities. For example, it will be possible to construct
soliton filter which prevents a selected soliton from pass
through the segment.

In the present numerical study, we used one soliton as
incident wave. It will also be interesting to study the tran
mission of many incident solitons. In this case, the front
soliton transmission coefficientT1 will no longer be well
defined and we must take account of the energy distribu
in all solitons. In this situation several questions arise: Is
possible to realize a stationary state by many solitons? W
is the interaction between solitons and localized oscillatio
How is the interval between two solitons affected by r
flected waves? These are subjects to be studied in the fu
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FIG. 10. TheN dependence of the frontier soliton transmissi
coefficientT1 obtained by the renormalization of the wave numb
at every 100 sites for the difference of two kinds of massese
50.2 ~d! and 0.4~1!. N is the total length of the impure segmen
The wave number of the initial incident soliton iski51.0. The solid
and dashed lines denote theN dependence obtained in Sec. III fo
e50.2 ande50.4, respectively.
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