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Propagation of solitons in the Toda lattice with an impure segment
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The transmission and scattering of a single soliton is studied numerically in the Toda lattice with an impure
segment which consists of two kinds of masses. The incident soliton is split into transmitted, reflected, and
trapped solitons by the impure segment. The energy of the soliton trapped in the segment escapes from the
segment very slowly and thus we can define the transmission rate by the ratio of energies of the transmitted
soliton and the incident soliton. It is shown that the dependence of the transmission rate on the segment length
N can be fitted quite well by 1/(* «NP). The transmission rate is also shown to be a monotone decreasing
function of the wave number of the incident soliton. Most of the energy of the transmitted wave is carried by
a large solitor(the frontier soliton at the front, which is shown to be an exact soliton of the Toda lattice. When
the mass difference is small, the transmission rate can be obtained by considering the segment as a repetition
of a unit and repeating the renormalization of the wave number due to the unit.

PACS numbegps): 42.81.Dp, 05.45.Yv

[. INTRODUCTION exact solution exists for the Toda lattice without continuum
approximation, we can change the wave number of the soli-
Propagation of solitons in inhomogeneous media show#on as large as we want axi@) since there exists a nonlinear
many important aspects such as deformation and disruptionC circuit that is identical to the Toda lattice as suggested by
of solitons, excitation of localized modes, and scattering ofHirota and Suzukj11], we can test our numerical results by
solitons [1-14]. In particular, the generation of localized experiments. The basic study for the soliton propagation in
modes and scattering of incident solitons due to impuritiegnedia subject to random modifications is also relevant and
are important problems in the study of the basic properties oimportant in the optical soliton communication in fiber optics
soliton propagation and in practical applications. It is well[16].
known that a harmonic chain with a light mass impurity has  Our model is introduced in Sec. I, where we define basic
a stable localized mode whose amplitude decays exponeguantities which are used in the following discussion. When
tially with the distance from the impurity15]. Many nu- @ soliton is launched into a segment with random mass dis-
merical studies have shown that there are localized modes iifibution, we observe transmitted, reflected, and trapped soli-
nonlinear media with impurities. The localized mode due totons. The trapped soliton appears to be localized in the seg-
a single impurity in the Toda lattice behaves similar to thement and to gradually escape from the segment. We call the
localized state in a harmonic chain with a single impuritytrapped soliton a quasilocalized soliton. We define quantities
[1,7,8. When nonlinearity and inhomogeneity are weakdescribing soliton propagation in this situation. In Sec. Il
enough, the scattering problem of solitons can be treate@e present the numerical results when a soliton is launched
analytically by a perturbation method. In this case, the deinto a finite impure segment. We study the dependence of the
viation from the one soliton state is insignificant. For ex-scattering characteristics on the length of the segment and
ample, the Toda lattice with a single mass impurity has beethe wave number of the soliton. We will see that the trans-
studied with the perturbation method on the basis of the inmitted wave consists of many peaks, the first one of which is
verse scattering transformation by Yajirfs. If the differ-  an exact soliton. In Sec. IV, we discuss the time dependence
ence of mass is small enough, the decreagid\ of the of the trapped solitons in the impure segment. We give a
transmitted soliton amplitude was shown to behavesas Simple analysis of the scattering process in Sec. V. Section
x(eA)?, whereA is the amplitude of the incident wave. VI is devoted to discussion.
Transmission of a soliton in random media with quartic non-
linearity has been studied theoretically and numerically Il. MODEL
[10,12,14. The time dependence of the amplitude of the . ) o
transmitted soliton was shown to behavetad? for larget _ We consider the Toda lattidd 7] whose Hamiltonian is
in the continuum limif 10]. When nonlinearity and inhomo- 9iven by
geneity are not weak, it is virtually impossible to obtain the
solution analytically._ ' _ H= Z ip%+ E(e—bun+ bu,—1)|, 2.1)
In this paper, we investigate numerically fundamental as- no[2m, b

pects of soliton scattering due to impure segments. In the
present study, we treat the Toda lattice as a representative Un=0n+1—0n, (2.2)
system which supports solitons. It should be emphasized that
the treatment presented here will give some basic principlegsherem, is the mass of a particle at siteandp,, andg, are
in the study of soliton scattering and transmission in generathe momentum and displacement of the particle on sjte
The reason that we treat the Toda lattice is fiatsince the  respectively. The interaction between particles on sitard
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FIG. 1. The perspective of an incident soliton on the Toda lat- =
tice with the impure segmentsIn<N.
n+1 is determined bya and b, whereb is a controlling
parameter of the nonlinearity. In fact, if we take the limit of (R) L m
b=0 keepingk=ab constant, the potential energy becomes T R e —T v

the harmonic form=,3K(q,+1—0,)2. We embed a finite
segment of impure masses in a homogeneous infinite chain. FIG. 2. The profile of waves, after some time the soliton passes

Namely, we set the impure segment 4dt1,10Q (denoted by a thick dashed line
which consists of transmitted§, reflected R), and quasilocalized
m for n<0 and n=N+1 2.3 (L) waves.U,, is relative displacement scaled byb1/
mn 1 .

N m(1l+ey, for 1=n=<N ) )
to study the scattering process, we define three temporal

wherey, is assumed to be 1 er1 ande e (0,1) denotes the quantities which represent the fraction of the incident energy
difference of two kinds of masses. We place equal numbein these three waves:
(N/2) of y,=1 andy,=—1 randomly in the segment of

sites, so that the average mass of the segment is the same as T(7)=E+(7)/Eo, (219
the regular part.
In order to perform the numerical study, we introduce R(7)=ERr(7)/Ey, (212
dimensionless variables for time, momentum, and displace-
ment which are defined by L(7)=EL(7)/Eo, (2.13
r=0Ot, (2.4) whereE+(7) andEg(7) are the energy in the regions left and
right of the segment, respectively, agd(7) is the energy in
b the segment. As we can see from the following numerical
Pn:mpn, (2.5 results, the transmitted soliton consists of a large soliton at

the front and many small waves following it, and most of the
energy is carried by the large soliton. We call the large soli-

Qn=b0p, (26 ton the frontier soliton. Therefore we can use the frontier
where() = yab/m. The equations of motion reduce to soliton transmission coefficient
J Q B Pn le El/EO (214)
It " 1+ey, as the measure of the transmission coeffici@Bt14], where
2.7 E, is the total energy of the frontier soliton. In RE14], it is
EP“: —(e"Yn—1)+(e Yn-1-1), called “the first soliton transmission coefficient.” We use

these quantities to analyze the scattering process of a soliton

whereU,=Q,,,—Q,. At time 7=0, we prepare one soli- " the following sections.

ton solution
I1l. TRANSMISSION PROFILES

_ 2 —2 _
Un=—In[1+wgcosh “(kon—wor)]l-~0, (28 We prepare a chain of 500 sites in which we embed an

impure segment of 100 sites pt,100. We integrate Eq.
(2.7 numerically using the fourth-order Runge-Kutta

at the far left of the segment and let it propagate to the righf?€thod and obtain the spatiotemporal evolution of energy
(Fig. 1). The energy of the soliton in the unit afb is given  4€nsityna(7) which is given by

o 1 [P
Eo= 2(sinhkocoshko—Ko). (2.10 "(T)‘z_E0 1+ey,

+e U+ Uy (r)—1]

Eyerbe,ko is regarded as the wave number of the soliton scaled tleYn 104U, (1)-1]]. 3.)
When the soliton passes the impure segment, we observe

three waves subsequently: transmittef),(reflected R), = We note thath,(7) is normalized by the total energy of

and quasilocalizedL) waves (Fig. 2. The energy of the incident soliton. Figure 3 shows,(7) as a function ofh and

incident soliton is distributed into these three waves. In order- when the difference of two kinds of masses and the wave
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FIG. 3. The spatiotemporal evolution of energy density7)
which is normalized by total energy. is dimensionless time de-

fined by 7= \ab/mt. % N 1000

_nur_nber of t_he 'T‘C'de”t soliton are=0.2 andk,=1.0. The_ FIG. 5. The frontier soliton transmission coeffici@itis plotted
incident soliton is scattered by the segment, and transmittegs - tunction of the segment lengthwith error bars fore=0.1
and reflected waves are produced. At the same time a part @@) 0.2 (@), 0.3(%), and 0.4(+). The wave numbek, of the

the incident soliton energy is captured in the impure Segicident soliton is 1.0. The solid curves are the fit by 3.
ment. The characteristics of the transmitted wave depend on

the strength of the impure segment and the amplitude of the |n Fig. 4, the abrupt decrease R(7) accompanied with
incident soliton. We observed that when the mass differencg,e abrupt increase ib(7) indicates that the soliton entered

e is small and the amplitude of the incident soliton is small,the segment at=85. Similarly, the sudden increaseTiir)

the transmitted wave keeps its shape as soliton and propgear 7=175 denotes that a part of the incident soliton is
gates without much effect. When the irregularity is strong,jeaving the segment. The energy in the impure segiént

the transmitted wave is disintegrated into a frontier solitonyecreases very slowly after some time and tfgn) and
and many little waves which follow the frontier soliton. In R(7) are regarded as constants which can be used to define
Fig. 4, we showT(7), R(7), andL(7) as functions of time  the transmission and reflection coefficients.

whereE+(7) =X _10ihn(7),Er(7) = =32 hn(7), andE (7) Since most part of the energy in the transmitted waves is
=30_ .00 are utilized in Egs.(2.1)—(2.13. Since our carried by the frontier soliton, we use mostly the frontier
model does not have any energy dissipation, the total energspliton transmission coefficieri, in the following discus-

should be conserved, namely, sion.
T(n)+R(7)+L(7)=1. (3.2 A. N dependence ofT
This sum rule was confirmed to hold in our results within the & obtainedT, for various lengthN of the impure seg-
discretization error. ment keeping other parameters fixed. The total endtgy
and the wave numbek, of the incident soliton are 1.6269
{ ———— and 1.0. Figure 5 shows thl dependence off; for e

=0.1, 0.2, 0.3, and 0.4, which were obtained by the average
- over 20 samples.
- 1 The N dependence of ; can well be fitted by

1
I /”r 1 Ti(N)= ToanE (3.9

L j The values ofx and B are summarized in Table I. Therefore,

T, R, LY
o
i

' _________ RO__ ] TABLE I. The constantse and B in function 1/(1+ aN#),
L ,}‘{ . which represents\ dependence off; for the difference of two
| ; d L(T) kinds of masse=0.1, 0.2, 0.3, and 0.4. The wave number of
P’J incident soliton is fixed irko=1.0.
0 1 1 1 1 1 1 1 1 1
0 520 1000 e o B
FIG. 4. The energy of transmitte@(r), reflectedR(7), and 01 0.001376 1.086
localizedL (7) solitons as functions of time: is dimensionless time 0.2 0.003952 1.174
defined byr=+ab/m t. The impure segment length, the wave num- 0.3 0.01114 1.112
ber of the incident soliton, and the difference of two kinds of 0.4 0.03384 0.9373

masses ar®l=100, ky=1.0, ande=0.2, respectively.
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FIG. 7. Comparison of the frontier solitor@®() and the exact
FIG. 6. The frontier soliton transmission coeffici@nt(+) as a  soliton of the Toda latticé—) with the same energyJ, is relative
function of the wave numbek, of the incident soliton with error displacement scaled byHL./
bars. The wave numbdris scaled byb. The impure segment length
and the difference of two kinds of masses Bre 100 ande=0.2.

The solid curve denotes the Lorentzian functi@m). segment. In the time region, 180-= 500, the decay off ()

can be approximated by e?'”, the value of parametef is
summarized in Table Il. The decay in the long time region
can be fitted by a power-law function =~ # whose exponent

B. ko dependence ofT; is also summarized in Table II. The crossover indicates that
stable trapped modes are found in the segment and that the
trapped modes escape from the region at a much slower rate.

for largeN we haveT;~N"#.

KeepingN=100 ande=0.2 fixed, we calculated for
solitons with various wave numbers. In Fig.T,'s are plot-
ted against the wave numbley of the incident soliton, which
were calculated from the average over 10 samples. We can
see from Fig. 6 tha®; decreases witlky. In the smallkg

region,ko=2.2, the decay ol ; is represented by a Lorent- e analyze th& dependence of the frontier soliton trans-

V. SIMPLE ANALYSIS

zian function mission coefficient from the results obtained in Sec. Ill. We
plot the wave numbek; of the frontier soliton transmitted
T.~ c (3.4) from an impure segment against the wave nunibesf the
1= - .
kot+c

with ¢=1.178. In the largek, limit, T, tends to a finite
value.

C. Frontier soliton

The frontier soliton seems to propagate without decay af-
ter it entered into the homogeneous region on the right hand E 0.1
side. To confirm this, we show in Fig. 7 the comparison -
between the frontier soliton and an exact soliton with the
same energy. Agreement of the shape of these solitons is
excellent, and thus it is concluded that the scattering process
generates a new soliton.

IV. QUASILOCALIZED SOLITONS 0.01

100 1000

A part of the incident soliton is trapped in the impure T
segment and the trapped energy escapes from the segmentr g g The energy (r) of the solitons trapped in the impure
gradually. Figure 8 shows the decay of the trapped energ¥egment is plotted as a function of time in the logarithmic scale for
for e=0.1, 0.2, 0.3, and 0.4 in the logarithmic scale. Theihe difference of two kinds of masses=0.1 (the solid ling, 0.2
segment length and the wave number of the incident solitofthe dashed line 0.3 (the short dashed lingand 0.4(the dotted
areN=100 andk,=1.0. line). 7 is dimensionless time defined by=vab/m t. The impure

In Fig. 8, the initial weak decay for=170 represents the segment length and the wave number of the incident solitorNare
decay due to the reflection, and the following rapid decrease- 100 andk,=1.0. The dot-dashed curve denotes fitting function
is produced by the escape of the frontier soliton from the~e®” and the two-dot—dashed line denotes™* for e=0.1.
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TABLE II. The coefficient of functions which represents time
dependence of the ener@yy7) of the solitons localized in the im-
pure segment for the difference of two kinds of masses
=0.1, 0.2, 0.3, and 0.4. The length of the impure segment and th
wave number of the incident soliton al= 100 andk,=1.0, re-
spectively. In the intermediate time regitr{7)~e¥" and in the
long time regionL(7)~ 7 ~.

€ & M
0.1 397.1 0.2511
0.2 272.4 0.1073
0.3 290.6 0.2898
0.4 270.4 0.3694

incident soliton, wheré; is determined numerically frof;
by

E;T,=2(sinhk;coshk;—k;), (5.0
whereE; is the total energy of the incident soliton. Figure 9
showsk; as a function ok; for the impure segment length
and the mass difference ake=100 ande=0.2.

We have shown that the frontier transmitted soliton is the
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FIG. 10. TheN dependence of the frontier soliton transmission
coefficientT, obtained by the renormalization of the wave number
at every 100 sites for the difference of two kinds of masees
=0.2(®) and 0.4(+). N is the total length of the impure segment.
The wave number of the initial incident solitonkis=1.0. The solid
and dashed lines denote thedependence obtained in Sec. Il for
e€=0.2 ande= 0.4, respectively.

exact soliton of the Toda lattice in Sec. lll. Suppose a soliton

propagates through a long impure segmentefnN, sites.
(As an example, we sdil;=100) Then, we can consider
that the soliton goes through a segmentN\yf sites one by

one and each segment changes the wave number of the sd

ton according to the relation shown in Fig. 9. Thus by re-
peating the renormalization of the wave numlerk; n
times, we can estimate th¥ dependence off; from Eq.
(5.1 which is plotted in Fig. 10 together with the result
obtained in Sec. Ill. We can see from Fig. 10 that wleen
small (=0.2) the renormalization method works quite well,
and the agreement becomes poor for laegé=0.3). The
discrepancy for large is due to the fact that the soliton is
reflected at the boundary between successive segments.
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FIG. 9. The wave numbek; (@) of the transmitted frontier
soliton as a function of the wave numberof the incident soliton.
The wave numbek is scaled byb. The impure segment length and
the difference of two kinds of masses afe=100 ande=0.2. The
dashed line denotdg=Kk; .

VI. SUMMARY

We have studied numerically the propagation of solitons
arough a segment with impure masses and investigated the
characteristic feature in the scattering process of solitons by
the segment. The incident soliton propagates emitting local-
ized modes due to the breaking of integrability by the ran-
dom mass segment. The localized modes radiate ripples, and
localized energy escapes gradually from the impure segment.
We defined the transmission, reflection, and quasilocalized
rate using the distribution of the incident energy in these
waves. We also defined the frontier soliton transmission co-
efficient T, and showed thaf, behaves as 1/(t aN”) as a
function of length N of the impure segment. We also showed
that T, depends on the energy or the wave number of the
incident soliton. It is interesting to note that the frontier
transmitted soliton is also an exact soliton of the Toda lattice.
This indicates that we can control the soliton transmission by
impurities. For example, it will be possible to construct a
soliton filter which prevents a selected soliton from passing
through the segment.

In the present numerical study, we used one soliton as the
incident wave. It will also be interesting to study the trans-
mission of many incident solitons. In this case, the frontier
soliton transmission coefficient; will no longer be well
defined and we must take account of the energy distribution
in all solitons. In this situation several questions arise: Is it
possible to realize a stationary state by many solitons? What
is the interaction between solitons and localized oscillations?
How is the interval between two solitons affected by re-
flected waves? These are subjects to be studied in the future.
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